Examples: Refined ramification under a Galois scaffold

Griff Elder
University of Nebraska at Omaha

May 23, 2016

Setting: local fields

p is a fixed prime integer
K is a local field, complete with respect to a discrete valuation v_{K}, normalized so that $v_{K}\left(K^{\times}\right)=\mathbb{Z}$
Then K has

- a valuation ring $\mathcal{O}_{K}=\left\{x \in K: v_{K}(x) \geq 0\right\}$,
- uniformizers π_{K} such that $v_{K}\left(\pi_{K}\right)=1$,
- a unique maximal ideal $\mathcal{M}_{K}=\left\{x \in K: v_{K}(x)>0\right\}$, and
- a residue field $\kappa=\mathcal{O}_{K} / \mathcal{M}_{K}$.

Assume that κ is perfect, and $\operatorname{char}(\kappa)=p$.
So if κ is finite, then either

- K is a finite extension of $\mathbb{Q}_{p}(\operatorname{char}(K)=0)$; or
- $K=\kappa((t))$ with $v_{K}(t)=1(\operatorname{char}(K)=p)$.

flaw in ramification

Let L / K be a totally ramified, Galois extension of degree p^{n} with Galois group and ramification filtration of normal subgroups,

$$
G_{i}=\left\{\sigma \in \operatorname{Gal}(L / K):(\sigma-1) \pi_{L} \in P_{L}^{i+1}\right\}
$$

Then for each $i, G_{i} / G_{i+1}$ is a (possibly trivial) elementary abelian p-group.

Integers b such that $G_{b} \neq G_{b+1}$ are called ramification breaks/numbers.
Ramification breaks encode valuable information. Clearly we can't have more than n where $|\operatorname{Gal}(L / K)|=p^{n}$. If we have fewer, information is lacking.

How to repair this deficiency?
Two fixes: Degrees of inseparability \& Refined ramification and refined ramification comes in two flavors.

Two flavors: the main difference

In both cases, we focus on the subextension where "information is lacking" - where the Galois group is $G=G_{b} / G_{b+1}$ and $|G|>p$. There we find ourselves interested in measuring the increase in valuation that results from application of an element $\gamma \in \kappa[G]$.
Version VC: Measured on elements of Valuation Criterion for a normal basis generator: Let $\rho \in L$ satisfy $v_{L}(\rho)=b$, then

$$
v_{L}(\gamma \rho)-v_{L}(\rho)
$$

Version SS: Take the Smallest Shift:

$$
\hat{v}_{L}(\gamma)=\min \left\{v_{L}(\gamma x)-v_{L}(x): x \in L^{\times}\right\} .
$$

VC Benefit: There are n refined breaks for $|G|=p^{n}$.
VC Deficiency: Unless $n \leq 2$, there is no proof that refined breaks are independent of choice of element ρ.
SS Benefit: Value of refined breaks is independent of choices.
SS Deficiency: Unless $n \leq 2$, there is no proof that all lacking information is retrieved - namely that we get n refined breaks for $|G|=p^{n}$.

Henceforth we restrict our attention to totally ramified Galois extensions L / K with one break in their ramification filtration at b.

Conjecture 1: (Strong) Let $\rho \in L$ with $v_{L}(\rho)=b$. Let $\gamma \in \kappa[G]$, then for all $x \in L^{\times}$,

$$
v_{L}(\gamma \rho)-v_{L}(\rho) \leq v_{L}(\gamma x)-v_{L}(x)
$$

Conjecture 2: (Weak) Let $\rho, \rho^{\prime} \in L$ with $v_{L}(\rho)=v_{L}\left(\rho^{\prime}\right)=b$. Let $\gamma \in \kappa[G]$. Then

$$
v_{L}(\gamma \rho)=v_{L}\left(\gamma \rho^{\prime}\right) .
$$

Theorem. If the extension has degree p or p^{2}, or has a scaffold (of any tolerance/precision $\mathfrak{C} \geq 1$), Conjecture 1 holds.

Under Conjecture 1, the competing flavors of refined ramification agree.
Under Conjecture 2, the VC refined breaks are canonical - independent of choice of element $\rho \in L$ with $v_{L}(\rho)=b$.

Benefit of VC definition

Upper bounds from subextensions.
Proposition. Let K_{n} / K_{0} be an elementary abelian extension of degree p^{n} with one ramification break at b with Galois group G_{n}. Let K_{n-1} / K_{0} be a subextension of degree p^{n-1} with Galois group G_{n-1}.
Let $r_{1}<r_{2}<\cdots<r_{n}$ be the refined breaks measured on $\rho \in K_{n}$ satisfying $v_{n}(\rho)=b$. Let $\rho^{\prime}=\operatorname{Tr}_{K_{n} / K_{n-1}} \rho \in K_{n-1}$. Observe that $v_{n-1}\left(\rho^{\prime}\right)=b$. Let $s_{1}<s_{2}<\cdots<s_{n-1}$ be the refined breaks for K_{n-1} / K_{0} measured on $\rho^{\prime} \in K_{n-1}$. Then for $2 \leq i \leq n$, we have

$$
r_{i} \leq p s_{i-1}
$$

Proof. Associated with $r_{1}, r_{2}, \ldots, r_{n}$ are elements γ_{i} in the augmentation ideal $/$ of $\kappa[G]$ such that $r_{i}=v_{n}\left(\gamma_{i} \rho\right)-v_{n}(\rho)$. In other words,

$$
v_{n}\left(\gamma_{i} \rho\right)=b+r_{i}
$$

We view $\kappa[G]$ as vector space over κ under the usual scalar multiplication, ignoring κ-action via truncated powers.

Without loss of generality, $\gamma_{1}=\sigma_{n}-1$ where $\left\langle\sigma_{n}\right\rangle=\operatorname{Gal}\left(K_{n} / K_{n-1}\right)$. Recall $G_{n}=\operatorname{Gal}\left(K_{n} / K_{0}\right)$, and $G_{n-1}=\operatorname{Gal}\left(K_{n-1} / K_{0}\right) \cong G /\left\langle\sigma_{n}\right\rangle$.
Using [Serre: Local Fields, V §3 Lemma 4]

$$
v_{n-1}\left(\operatorname{Tr}_{K_{n} / K_{n-1}} \gamma_{i} \rho\right)=b+\left\lfloor\frac{p-1+r_{i}}{p}\right\rfloor .
$$

Since G is abelian, $\operatorname{Tr}_{K_{n} / K_{n-1}} \gamma_{i} \rho=\bar{\gamma}_{i} \rho^{\prime}$ where $\bar{\gamma}_{i}=\gamma_{i}\left\langle\sigma_{n}\right\rangle \in \kappa\left[G_{n-1}\right]$. Thus

$$
\begin{equation*}
v_{n-1}\left(\bar{\gamma}_{i} \rho^{\prime}\right)-v_{n-1}\left(\rho^{\prime}\right)=\left\lfloor\frac{p-1+r_{i}}{p}\right\rfloor . \tag{1}
\end{equation*}
$$

Since the r_{i} are distinct, the elements $\left\{\gamma_{i}: 1 \leq i \leq n\right\}$ cannot be linearly dependent over κ. Thus they provide a κ-basis for $\kappa\left[G_{n}\right]$, which means that their image $\left\{\bar{\gamma}_{i}: 2 \leq i \leq n\right\}$ provides a κ-basis for $\kappa\left[G_{n-1}\right]$.
Associated with $s_{1}, s_{2}, \ldots, s_{n-1}$ are elements γ_{i}^{\prime} in the augmentation ideal of $\kappa\left[G_{n-1}\right]$ such that $v_{n-1}\left(\rho^{\prime}\right)+s_{i}=v_{n-1}\left(\gamma_{i}^{\prime} \rho^{\prime}\right)$. Since the s_{i} are distinct, $\left\{\gamma_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ is a κ-basis for $\kappa\left[G_{n-1}\right]$. Thus for each $2 \leq j \leq n$,

$$
\bar{\gamma}_{j}=\sum_{i=1}^{n-1} a_{i, j} \gamma_{i}^{\prime}, \text { with } a_{i, j} \in \kappa
$$

Recall $\bar{\gamma}_{j}=\sum_{i=1}^{n-1} a_{i, j} \gamma_{i}^{\prime}$. Notice at least one $a_{i, j} \neq 0$.
Since $s_{1}<s_{2}<\ldots<s_{n-1}$ and using (1),

$$
\left\lfloor\frac{p-1+r_{j}}{p}\right\rfloor=v_{n-1}\left(\bar{\gamma}_{j} \rho^{\prime}\right)-v_{n-1}\left(\rho^{\prime}\right)=\min \left\{s_{i}: a_{i, j} \neq 0\right\}
$$

which is equivalent to

$$
\min \left\{p\left(s_{i}-1\right): a_{i, j} \neq 0\right\}<r_{j} \leq \min \left\{p s_{i}: a_{i, j} \neq 0\right\}
$$

If there is a $2 \leq k \leq n$ such that $p s_{k-1}<r_{k}$, then for all $k \leq j \leq n$,

$$
\bar{\gamma}_{j}=\sum_{i=k}^{n-1} a_{i, j} \gamma_{i}^{\prime},
$$

which means that $\left\{\bar{\gamma}_{j}: k \leq j \leq n\right\}$ can be expressed in terms of $\left\{\gamma_{i}^{\prime}: k \leq i \leq n-1\right\}$. Thus $\left\{\bar{\gamma}_{j}: k \leq j \leq n\right\}$ is linearly dependent, contradicting the fact that $\left\{\bar{\gamma}_{i}: 2 \leq i \leq n\right\}$ is a κ-basis for $\kappa\left[G_{n-1}\right]$.

Example: Refined breaks p^{3} with scaffold

Notation: $\wp(x)=x^{p}-x$. Truncated y th power $(1+x)^{[y]}=\sum_{i=0}^{p-1}\binom{y}{i} x^{i}$.
Let $p \nmid b>0$, and $\beta \in K_{0}=\kappa((t))$ with $v_{0}(\beta)=-b$.
Define $\wp\left(x_{1}\right)=\beta$. Choose $\omega_{2}, \omega_{3} \in \kappa$ such that $\left\{1, \omega_{2}, \omega_{3}\right\}$ are linearly independent over \mathbb{F}_{p}, and $\alpha_{2}, \alpha_{3} \in \mathcal{M}_{0}$. Set $\Omega_{i}=\omega_{i}+\alpha_{i}$, and define

$$
\wp\left(x_{i}\right)=\Omega_{i}^{p^{2}} \beta, i=2,3 .
$$

Let $K_{1}=K_{0}\left(x_{1}\right), K_{2}=K_{0}\left(x_{1}, x_{2}\right), K_{3}=K_{0}\left(x_{1}, x_{2}, x_{3}\right)$. Then K_{3} / K_{0} is a C_{p}^{3}-extension with only one ramification break at b.
Set

$$
\begin{array}{ll}
X_{1}=x_{1}, \text { then } & v_{1}\left(X_{1}\right)=-b, \\
X_{2}=x_{2}-\Omega_{2}^{p} x_{1}, \text { then } & v_{2}\left(X_{2}\right)=-b, \\
X_{3}=\left(x_{3}-\Omega_{3}^{p} x_{1}\right)-\frac{\wp\left(\Omega_{3}\right)}{\wp\left(\Omega_{2}\right)}\left(x_{2}-\Omega_{2}^{p} x_{1}\right), & v_{3}\left(X_{3}\right)=-b .
\end{array}
$$

Define $\sigma_{i} \in \operatorname{Gal}\left(K_{3} / K_{0}\right)$ by $\left(\sigma_{i}-1\right) x_{j}=\delta_{i, j}$. Collect data:

$$
\begin{aligned}
& \left(\sigma_{3}-1\right) X_{3}=1 \quad\left(\sigma_{3}-1\right) X_{2}=0 \quad\left(\sigma_{3}-1\right) X_{1}=0 \\
& \left(\sigma_{2}-1\right) X_{3}=-\mu_{23}\left(\sigma_{2}-1\right) X_{2}=1 \\
& \left.\left(\sigma_{1}-1\right) X_{3}=-\mu_{13}\left(\sigma_{1}-1\right) X_{2}=-\mu_{12}-1\right) X_{1}=0 \\
& \left(\sigma_{1}-1\right) X_{1}=1
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mu_{12}=\Omega_{2}^{p}, & \omega_{12}=\omega_{2}^{p}, \\
\mu_{23}=\wp\left(\Omega_{3}\right) / \wp\left(\Omega_{2}\right), & \omega_{23}=\wp\left(\omega_{3}\right) / \wp\left(\omega_{2}\right), \\
\mu_{13}=\left(\Omega_{2}^{p} \Omega_{3}-\Omega_{3}^{p} \Omega_{2}\right) / \wp\left(\Omega_{2}\right), & \omega_{13}=\left(\omega_{2}^{p} \omega_{3}-\omega_{3}^{p} \omega_{2}\right) / \wp\left(\omega_{2}\right) .
\end{array}
$$

Define $\eta_{12}=\omega_{12}-\mu_{12}, \eta_{23}=\omega_{23}-\mu_{23}$, and $\eta_{13}=\omega_{13}-\mu_{13} \in \mathcal{M}_{0}$.

Then $\Theta_{3}=\sigma_{3}, \Theta_{2}=\sigma_{2} \Theta_{3}^{\left[\mu_{23}\right]}$, and $\Theta_{2}=\sigma_{1} \Theta_{3}^{\left[\mu_{13}\right]} \Theta_{2}^{\left[\mu_{12}\right]}$ provide a scaffold: Setting $\Psi_{s}=\Theta_{s}-1$. Then for $0 \leq i, j, k<p$,

$$
\Psi_{1}\binom{X_{3}}{i}\binom{X_{2}}{j}\binom{X_{1}}{k}=\binom{X_{3}}{i}\binom{X_{2}}{j}\binom{X_{1}}{k-1}
$$

and Ψ_{2}, Ψ_{3} act similarly.
Let $\Theta_{3}^{\prime}=\sigma_{3}, \Theta_{2}^{\prime}=\sigma_{2}\left(\Theta_{3}^{\prime}\right)^{\left[\omega_{23}\right]}$, and $\Theta_{2}^{\prime}=\sigma_{1}\left(\Theta_{3}^{\prime}\right)^{\left[\omega_{13}\right]}\left(\Theta_{2}^{\prime}\right)^{\left[\omega_{12}\right]}$.
Let

$$
\rho=\binom{X_{3}}{p-1}\binom{X_{2}}{p-1}\binom{X_{1}}{p-1} \in K_{3} .
$$

The VC refined breaks for K_{3} / K_{0} are

$$
\begin{aligned}
& r_{1}=v_{3}\left(\left(\Theta_{3}^{\prime}-1\right) \rho\right)-v_{3}(\rho)=b, \\
& r_{2}=v_{3}\left(\left(\Theta_{2}^{\prime}-1\right) \rho\right)-v_{3}(\rho)=\min \left\{b+v_{3}\left(\eta_{23}\right), p b\right\}, \\
& r_{3} \stackrel{?}{=} v_{3}\left(\left(\Theta_{1}^{\prime}-1\right) \rho\right)-v_{3}(\rho)=?
\end{aligned}
$$

The VC refined breaks for K_{2} / K_{0} are

$$
\begin{aligned}
& s_{1}=b, \\
& s_{2}=\min \left\{b+v_{2}\left(\eta_{12}\right), p b\right\}
\end{aligned}
$$

So we should expect to see

$$
\begin{aligned}
& r_{1}=v_{3}\left(\left(\Theta_{3}^{\prime}-1\right) \rho\right)-v_{3}(\rho)=b \\
& r_{2}=v_{3}\left(\left(\Theta_{2}^{\prime}-1\right) \rho\right)-v_{3}(\rho)=\min \left\{b+v_{3}\left(\eta_{23}\right), p b\right\}, \\
& r_{3} \stackrel{?}{=} v_{3}\left(\left(\Theta_{1}^{\prime}-1\right) \rho\right)-v_{3}(\rho)=\min \left\{\quad ? \quad, p b+v_{3}\left(\eta_{12}\right), p^{2} b\right\}
\end{aligned}
$$

We see

$$
\begin{aligned}
& v_{3}\left(\left(\Theta_{1}^{\prime}-1\right) \rho\right)-v_{3}(\rho) \\
& \quad=\min \left\{b+v_{3}\left(\omega_{12} \eta_{23}+\eta_{13}\right),(p+1) b+(p-2) r_{2}+v_{3}\left(\eta_{23}\right)\right. \\
& \left.p b+v_{3}\left(\eta_{12}\right), p^{2} b\right\}
\end{aligned}
$$

Caution: I haven't shown that applying an element in J_{κ}^{p}, where J_{κ} is the augmentation ideal of $\kappa[G]$, cannot increase this value. In other words, I haven't actually proven that $r_{3}=v_{3}\left(\left(\Theta_{1}^{\prime}-1\right) \rho\right)-v_{3}(\rho)$.

Closing question

A choice was made in (Byott-Elder, 2009) to work in

$$
\left(1+J_{\kappa}\right) /\left(1+J_{\kappa}^{p}\right),
$$

which is a κ-vector space under truncated κ-powers.
For extensions of degree p^{2} this choice was good enough: It can be shown that elements of J_{κ}^{p} increase valuation by at least $p b$: It can be shown that the second refined break is always bound from above by $p b$. And there are only two refined breaks to worry about.

Now that we are trying to develop a theory for larger extensions, we might want to revisit that decision. Modulo $\left(1+J_{\kappa}^{p}\right)$ pulls a veil over things one that I do not know how to remove.

